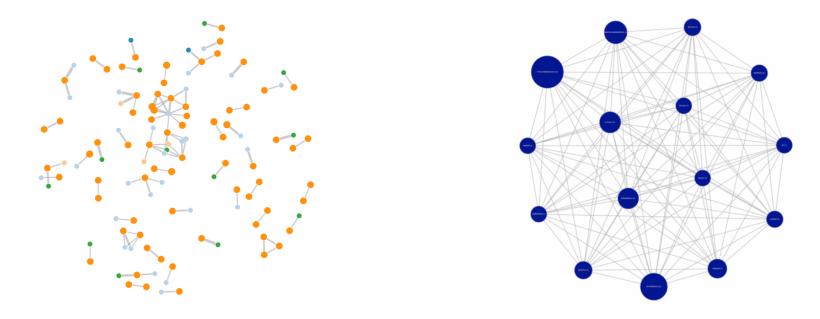
Today's announcements:

Final exam 12/14, 7-10p, Locations TBA. Format... Exam Reviews -



How would you characterize the difference between these graphs?

Prim's algorithms (1957) is based on the Partition Property:

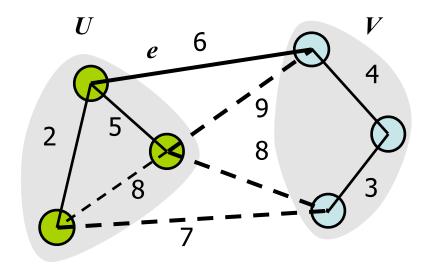
Consider a partition of the vertices of G into subsets U and V.

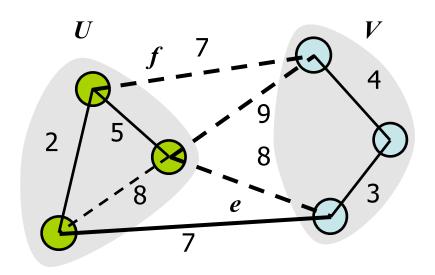
Let e be an edge of minimum weight across the partition.

Then e is part of some minimum spanning tree.

Proof:

See cs374





MST - minimum total weight spanning tree

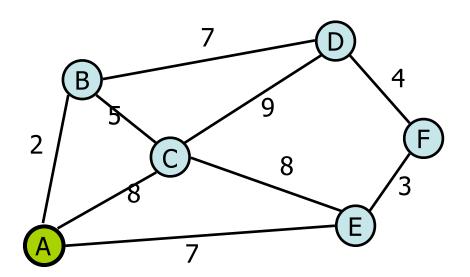
Theorem suggests an algorithm...



Example of Prim's algorithm -

Initialize structure:

- 1. For all v, d[v] = "infinity", <math>p[v] = null
- 2. Initialize source: d[s] = 0
- 3. Initialize priority (min) queue
- 4. Initialize set of labeled vertices to \emptyset .



Example of Prim's algorithm -

Initialize structure:

- 1. For all v, d[v] ="infinity", p[v] =null
- 2. Initialize source: d[s] = 0
- 3. Initialize priority (min) queue
- 4. Initialize set of labeled vertices to ∅.

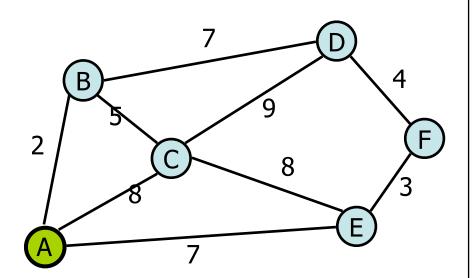
Repeat these steps n times:

- Find & remove minimum d[] unlabelled vertex: v
- Label vertex v
- For all unlabelled neighbors w of v,

If
$$cost(v,w) < d[w]$$

$$d[w] = cost(v,w)$$

$$p[w] = v$$



Prim's Algorithm (undirected graph with unconstrained edge weights):

Initialize structure:

- 1. For all v, d[v] = "infinity", <math>p[v] = null
- 2. Initialize source: d[s] = 0
- 3. Initialize priority (min) queue
- Initialize set of labeled vertices to ∅.

	adj mtx	adj list
heap	O(n ² + m log n)	O(n log n + m log n)
Unsorted array	O(n²)	O(n²)

Repeat these steps n times:

- Remove minimum d[] unlabeled vertex: v
- Label vertex v (set a flag)
- For all unlabeled neighbors w of v,

If
$$cost(v,w) < d[w]$$

$$d[w] = cost(v,w)$$

$$p[w] = v$$

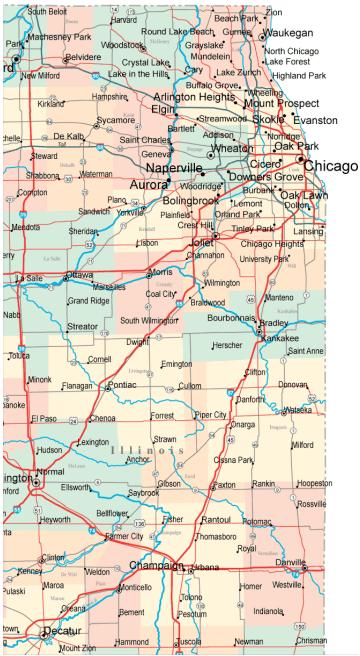
Which is best?

Depends on density of the graph:

Sparse

Dense

Single source shortest path

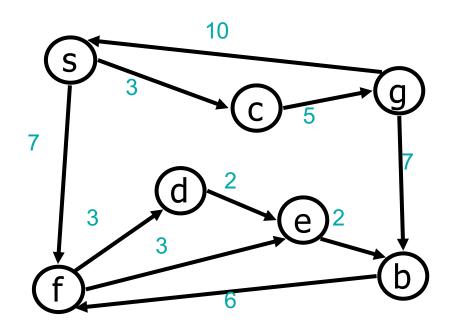


Given a start vertex (source) s, find the path of least total cost from s to every vertex in the graph.

Single source shortest path:

Input: directed graph G with non-negative edge weights, and a start vertex s.

Output: A subgraph G' consisting of the shortest (minimum total cost) paths from s to every other vertex in the graph.

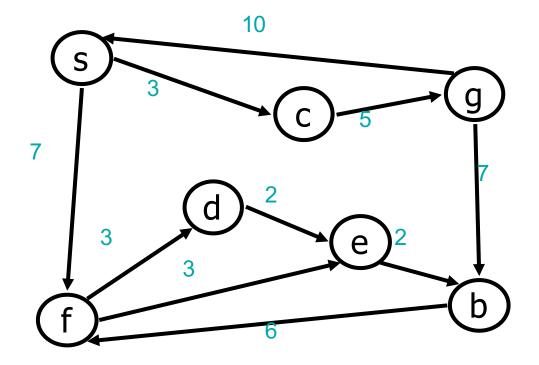


Dijkstra's Algorithm (1959)

Single source shortest path (directed graph w non-negative edge weights):

Dijkstra's Algorithm (1959)

Given a source vertex s, we wish to find the shortest path from s to every other vertex in the graph.



Initialize structure:

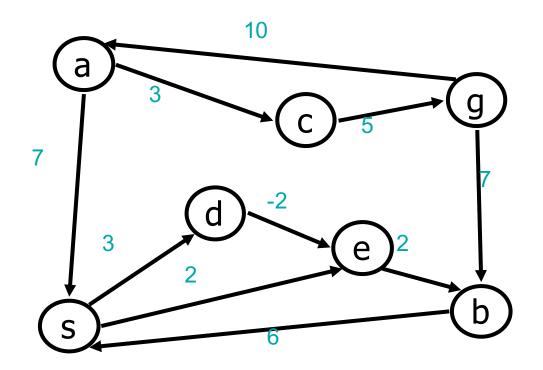
Repeat these steps:

- Label a new (unlabelled) vertex v, whose shortest distance has been found
- 2. Update v's neighbors with an improved distance

Single source shortest path (directed graph w non-negative edge weights):

Dijkstra's Algorithm (1959)

Why non-negative edge weights??



Initialize structure:

Repeat these steps:

- Label a new (unlabelled) vertex v, whose shortest distance has been found
- 2. Update v's neighbors with an improved distance

Single source shortest path (directed graph w non-negative edge weights):

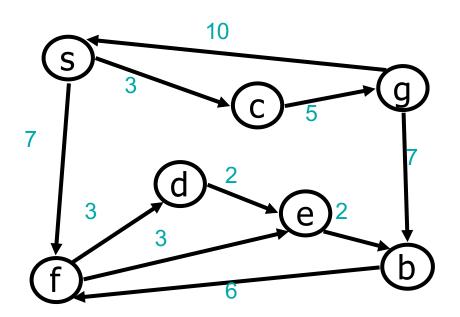
Initialize structure:

- 1. For all v, d[v] = "infinity", <math>p[v] = null
- 2. Initialize source: d[s] = 0
- 3. Initialize priority (min) queue

Repeat these steps n times:

- Find minimum d[] unlabelled vertex: v
- Label vertex v
- For all unlabelled neighbors w of v,

If (_____ < d[w])
$$d[w] = ____
p[w] = v$$



Running time?